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Approximation by Ridge Functions

and Neural Networks �

Pencho P� Petrushev

Abstract

We investigate the e�ciency of approximation by linear combinations of
ridge functions in the metric of L��B

d� with B
d the unit ball in R

d� If Xn

is an n�dimensional linear space of univariate functions in L��I�� I � ���� �	�
and 
 is a subset of the unit sphere Sd�� in R

d of cardinality m� then the
space Yn �� spanfr�x � �� � r � Xn� � � 
g is a linear space of ridge functions
of dimension � mn� We show that if Xn provides order of approximation
O�n�r� for univariate functions with r derivatives in L��I�� and 
 are properly
chosen sets of cardinality O�nd���� then Yn will provide approximation of order
O�n�r�d������� for every function f � L��B

d� with smoothness of order r �
d�
 � ��
 in L��Bd�� Thus� the theorems we obtain show that this form of
ridge approximation has the same e�ciency of approximation as other more
traditional methods of multivariate approximation such as polynomials� splines�
or wavelets� The theorems we obtain can be applied to show that a feed�
forward neural network with one hidden layer of computational nodes given
by certain sigmoidal function � will also have this approximation e�ciency�
Minimal requirements are made of the sigmoidal functions and in particular
our results hold for the unit�impulse function � � �

�����
�

Keywords and phrases� approximation error� ridge functions� neural net�
works�

AMS classi�cation� ��A��� ��A
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�
Abbreviated title� Approximation by Ridge Functions

� Introduction

A ridge function is a multivariate function of the form r�x ���� where r is a univariate
function� � is a �xed vector in Rd� the variable x � Rd� and x � � is the inner
product of x and �� These functions appear naturally in harmonic analysis� special
function theory� and in several applications such as tomography and neural networks�
In most applications� we are interested in representing or approximating a general

�This research was supported by ONR Research Contract N����������������
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function f on a domain � � Rd by linear combinations of ridge functions� It is
surprising therefore that the most fundamental questions concerning the e�ciency of
approximation by ridge functions are unanswered�

In this paper� we shall consider approximating functions in L��Bd�� Bd the
unit ball in Rd� d � �� by linear combinations of ridge functions� Using extension
theorems� the set Bd can be replaced by more general sets � � Rd�

Let Xn be a linear space of univariate functions in L��I�� I �	 
��� �� and let
�n � Sd�� be a �nite subset of the unit sphere Sd�� in Rd� Then�

Yn �	 spanfr�x � �� � r � Xn� � � �ng �����

is a space of multivariate ridge functions of dimension � n
�n� where 
�n is the
cardinality of �n� We shall relate the approximation e�ciency of Yn to that of Xn

and the distribution of the vectors of �n in Sd���
Let W s�L��I�� denote the univariate Sobolev spaces� We say that a sequence

of spaces Xn� n 	 �� �� � � �� dim�Xn� 	 n� provides approximation of order s if

E�g�Xn�L��I� � c�s�n�skgkW s�L��I��� g � W s�L��I��� �����

where
E�g�Xn�L��I�� �	 inf

r�Xn

kg � rkL��I�
is the error in approximating the univariate function g in the L��I� norm by the
elements of Xn� We denote similarly the multivariate Sobolev space W s�L��Bd�� on
Bd and the approximation error

E�f� Yn�L��Bd�� �	 inf
R�Yn

kf �RkL��Bd�

for any f � L��Bd�� Our main result� given in x�� shows that for any sequence of
spaces Xn� n 	 �� �� � � �� which provide approximation of order s� and for appropriately
chosen sets �n with 
�n 	 O�nd���� the sequence of spaces Yn� n 	 �� �� � � �� given in
������ provide the following approximation� for � �	 s � �d� �����

E�f� Yn�L��Bd� � c���n��kfkW��L��Bd��� f � W ��L��B
d��� �����

Note that there is in a certain sense an unexpected gain in the multivariate approx�
imation order s � �d � ���� over the univariate order s� This gain will be explained
later �see x���

One can generate the space Yn appearing in ����� by using very general uni�
variate spaces Xn such as splines or wavelets� In particular� our results apply to
feed�forward neural networks using a very general activation function �� A complete
discussion of the application to neural networks is given in x�� In this introduction� we
wish to illustrate the typical result by considering the following simple example� Let
� 	 �

�����
and de�ne Xn as the univariate space spanned by ��x� k�n�� � � k � n�
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Then� de�ning Yn for this Xn as described above� we obtain a space of dimension
O�nd� of certain piecewise constant functions� The space Yn can be realized compu�
tationally by a feed�forward neural network with O�nd��� computational nodes� In
this case �see x� for details�� ����� provides the approximation order � � d��

�
� One

might expect the estimate ����� to be � since we are using piecewise constants in the
approximation� As noted in ������ the gain of d��

�
in the approximation rate persists

in general �see also Theorem �����
There is a standard method in approximation theory �see 
DL� Chapter ���

which derives from ����� the estimate

E�f� Yn�L��Bd� � c
�
�r�f� n

���L��Bd� � kfkL��Bd�n
�r� � f � L��B

d� �����

with �r the r�th order modulus of smoothness of f � In the case that Yn contains all
polynomials of total degree � r �in d variables�� the last term on the right can be
eliminated�

Since Yn is a linear space of dimension O�nd� then it follows from the general
theory of n�widths that for all m � ��

sup
kfk

Wm�L��Bd��
��
E�f� Yn� � c�n

�m �����

with c� � � a constant depending only on m and d� In this sense� the estimates �����
cannot be improved�

We also note that ����� shows that� in general� linear spaces of ridge functions
are at least as e�cient as other methods of multivariate approximation such as poly�
nomials� wavelets� and splines�

This paper is an extension of the results from 
DOP�� where we considered the
case d 	 �� Throughout the paper we assume that d � �� although most of the
statements hold when d 	 ��

The results of this paper di�er from other work in this �eld in the following
respects� We are able to begin with a very general class of univariate spaces Xn�
Other authors �most notably Micchelli and Mhaskar 
MM�� 
MM�� and Mhaskar 
M��
have also considered approximation problems of the type treated here� The work of
Micchelli and Mhaskar does not give the best order of approximation� Mhaskar 
M�
has given best possible results but only in the case that Xn is generated using a rather
restrictive class of sigmoidal functions�

Our results are� for the present� limited to approximation in L�� and it remains
an important open question in ridge approximation to understand to what extent
results such as those presented in this paper are valid in Lp� p �	 ��

It is also an interesting question to understand which sets �n � Sd��� when
used in de�ning the spaces Yn� will provide the approximation order of ������ In the
case d 	 �� as was shown in 
DOP�� n equally spaced points on S� are the most
natural choice� There is no direct analogy of equally spaced points in Sd��� d � �� It
will become clear from x� that any set �n which permits a cubature formula that is
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exact for spherical polynomials of degree � n and with good localization properties
will provide spaces Yn which satisfy ������ Since we could not �nd in the literature
examples of such sets �n� we construct some in x�� There should be more elegant
and more natural constructions than ours� In some sense� one might expect that a
natural quadrature formula might provide the analogue of equally spaced points in
Sd��� d � ��

We prove ����� by �rst understanding well the structure of ridge polynomials�
Our main vehicle �given in x�� is a fundamental orthogonal decomposition of a general
function f � L��Bd� into ridge polynomials� This decomposition uses the univariate
Gegenbauer polynomials�

An outline of this paper is the following� The properties we need about Gegen�
bauer polynomials are given in x�� In x�� we give the fundamental orthogonal de�
composition of functions in L��Bd� in terms of ridge polynomials� In x�� we give our
construction of cubature �quadrature� formulas� In xx���� we introduce smoothness
spaces �the Sobolev spaces� and recall their characterization by polynomial approxi�
mation� In x�� we prove the main theorem about approximation by ridge functions�
In x�� we discuss how to improve the theorem of x� to be more amenable to applica�
tions� In x�� we give some applications of our results� in particular to feed forward
neural networks�

Throughout the paper� the constants are denoted by c� c�� � � � and they may
vary at every occurrence� The constants usually depend on some parameters �like the
dimension d� that will be sometimes indicated explicitly�

� The Gegenbauer �ultraspherical� polynomials

Special functions appear naturally when we represent a general function in terms of
ridge polynomials as will be done in the next section� In particular� the Gegenbauer
polynomials will play an important role in this paper� In this section� we shall present
the essential properties of Gegenbauer polynomials and bring out their role in the
Radon transform� We refer the reader to 
E� and 
Sz� as general references for this
section�

The Gegenbauer polynomials are usually de�ned by the following generating
function

��� �tz � z���� 	
�X

m��

C�
m�t�zm�

where jzj � �� jtj � �� and � � �� The coe�cients C�
m�t� are algebraic polynomials

of degree m which are called the Gegenbauer polynomials associated with �� The
family of polynomials fC�

mg�m�� is a complete orthogonal system for the weighted

space L��I� w�� I �	 
��� ��� w�t� �	 w��t� �	 �� � t����
�
� and we have

�



Z
I
C�
m�t�C�

n�t�w�t� dt 	

�
�� m �	 n
hn��� m 	 n

with hn�� �	
	�������n��� � ����

�n � ��n�����
� �����

where we use here and later the standard notation

�a�� �	 �� �a�n �	 a�a� �� � � � �a � n� �� 	 ��a � n����a��

Also� we have

C�
n ��t� 	 ����nC�

n�t�� C�
n��� 	

����n
n�

� and C�
� �t� 	 �� �����

The Gegenbauer polynomials can also be de�ned by the following identity �called
Rodrigues� formula��

C�
n�t� 	 ����n
n���� � t�����

�
�

�
d

dt

�n
�� � t��n���

�
� � 
n�� �	

����n
n��n�� � �

��n
� �����

There is an identity that relates Gegenbauer polynomials with di�erent weights��
d

dt

�m
C�
n�t� 	 �m���mC

��m
n�m�t�� m 	 �� �� � � � � n� �����

Special cases of the Gegenbauer polynomials are the Legendre polynomials Pn
and the Chebyshev polynomials of second kind Un which correspond to � 	 ��� and
� 	 �� respectively� Namely�

Pn�t� �	
����n

�nn�

�
d

dt

�n
��� t��n 	 C���

n �t��

Un�t� �	
sin�n � �� arccos tp

�� t�
	 C�

n�t��

The Chebyshev polynomials of the �rst kind Tn�t� �	 cosn arccos t can be considered
as the Gegenbauer polynomials C�

n associated with the weight w��t� 	 ��� t�������
We shall also need the Gegenbauer polynomials C�

n when � � � and� in par�
ticular� when � 	 ������ � � � Note that 
n�� 	 � when � 	 ������ � � � and n � ���
Therefore� we cannot use ����� to de�ne C��

n when � 	 �� �� � � � However� we can
de�ne �see 
Sz� Chapter IV ��

C�
n�t� �	 
��� t�����

�
�

�
d

dt

�n
��� t��n���

�
� � � � �� �����

where 
 is any constant independent of t� To our goals the normalization of C�
n

�� � �� is not essential� Identity ����� remains valid except for a constant factor �see

Sz� Chapter IV ��� for any �� we have�

d

dt

�m
C�
n�t� 	 cC��m

n�m�t�� m 	 �� �� � � � � n� �����

�



where c is independent of t�
The Gegenbauer polynomials play a fundamental role in inverting the Radon

transform� We shall show in Lemma ��� that follows that the Gegenbauer polynomials
C�
n for � 	 k and � 	 k� ��� �k an integer� are eigenfunctions for certain di�erential

operators that occur in the Radon transform inversion formula� These operators will
play an important role in de�ning an equivalent norm for the weighted Sobolev spaces
W s�L��I� w�� �see x���

We begin with a brief discussion of the Hilbert transform H on R and its
analogue H for the interval I �	 
��� ��� For any g � L��I� we de�ne

Hg �	 Hg� with g��t� �	

�
g�t�� t � I�
�� t � ������nI� �����

where Hg� is the Hilbert transform of g�� It follows that

Hg�t� 	
�

	
p�v�

Z
R�

g��s�
t� s

ds 	
�

	
p�v�

Z
I

g�s�

t� s
ds�

The analogue of the Hilbert transform on the circle T is the conjugate operator
�see 
Z� Chapter II��� If g � L��T�� we denote its conjugate function by

�g�� � �	
�

�	
p�v�

Z
T
g�
� cot

� � 


�
d
�

For any �nonnegative� weight function w� let L�
��I� w� be the space of all g �

L��I� w� with weighted mean value zero�
R
I g�t�w�t�dt 	 �� The following proposition

gives some properties of H which we shall use�

Proposition ��� If g � L��I�� we de�ne Tg�
� �	 sgn 
g�cos 
� sin 
 for 
 � 
�	� 	��
The Hilbert transform H satis�es�

�a� If g � L��I� then

Hg�cos � � 	 � �

sin �
gTg�� � a�e� on ��� 	�� �����

�b� We have� on ���� ��� Hw��
� 	 ��

H
w��
� Tn��� 	 �Un and H
w�Un� 	 Tn�� for n 	 �� �� � � �� �����

and hence

H
d

dt

w�Un� 	 �n � ��Un� ������

�c� The functions Vn �	 w��
� Tn� n 	 �� �� � � � �in analogy to fUng�n��� form a

complete orthogonal system for L��I� w���

�



�d� H is a one�to�one mapping of L�
��I� w�� onto L��I� w�� with

H��h 	 � �

w�
H�w�h� for h � L��I� w��

and
kHgkL��I�w�� 	 kgkL��I�w�� for g � L�

��I� w��� ������

�e� The operators H and d
dt

commute� for any polynomial P � we have

H

�
d

dt
�w�P �

�
	

d

dt
�H�w�P �� �

Proof� �a� We apply the substitution s 	 cos 
 to the integral that de�nes Hg and
replace t by cos � � � � � � 	 and obtain

Hg�cos � � 	
�

	
p�v�

Z �

�

Tg�
�

cos � � cos 

d


	
�

�	
p�v�

Z �

��
Tg�
�

cos � � cos 

d
�

since the integrand is even� Note that p�v�
R
I � � � ds 	 p�v�

R �
� � � � d
 above since the

substituting function and its inverse are smooth enough� Now� we use the identity

�

cos � � cos 

	 � �

� sin �

�
cot

� � 


�
� cot

� � 


�

�

to obtain

Hg�cos � � 	 � �

� sin �

�
�

�	
p�v�

Z �

��
Tg�
� cot

� � 


�
d
 �

�

�	
p�v�

Z �

��
Tg�
� cot

� � 


�
d


�
�

After substituting 
 	 �
� in the second integral above and using that Tg is even�
we see that the two integrals are equal and therefore� we obtain �a��

�b� For any function g � L��I� w
��
� �� we have T 
w��

� g��
� 	 g�cos 
�� Since the
conjugate function of cosn
 is sinn
� n 	 �� �� � � �� the �rst two statements in �b�
follow from �a�� Similar calculations give the last two statements�

�c� This is trivial�
�d� This follows from �b� by using the two bases for L��I� w�� given in �c��
�e� This follows from ������� �
We shall next show that the Gegenbauer polynomials are eigenfunctions of cer�

tain di�erential operators that arise in inverting the Radon transform� For functions
g de�ned on Bd� we introduce the following di�erential operators�

�g �	

�
d

dt

�d�� h
wd��g

i
� ������

and
D �	 �� d odd� D �	 H�� d even� ������

�



Lemma ��� Let d � � and de�ne Un �	 Cd��
n for n 	 �� �� � � �� Then� we have

DUn 	 �����
d��
� ��nUn� n 	 �� �� � � � � ������

and
��Un 	 ����d����nUn� n 	 �� �� � � � � ������

where
�n 	 �n � ��d�� � nd��� n 	 �� �� � � � � ������

Proof� We �rst consider ������ in the case when d is odd� d 	 �k � �� From �����
and ������ we �nd

DUn 	 DCk����
n 	

�
d

dt

��k h
w�k
� C

k����
n

i
	 c

�
d

dt

�n��k

w�n��k
�

	 c�

�
d

dt

�k
C

���
n�k 	 c�C

k����
n 	 c�Un�

By examining the coe�cients of tn we obtain that c� 	 ����k�n Thus ������ is proved
in this case�

Assume now that d is even� d 	� �k� Then� again using ������ ������ and ������
�recall that C�

n 	 Un� and the commutativity of d
dt

and H� we obtain

DUn 	 DCk
n 	

�
d

dt

��k��
H
h
w�k��
� Ck

n

i
	 c

�
d

dt

��k��
H

�
d

dt

�n
w�n��k��
�

	 c

�
d

dt

�k��
H

�
d

dt

�n�k
w�n��k��
� 	 c�

�
d

dt

�k��
H
d

dt

h
w�C

�
n�k��

i

	 c�

�
d

dt

�k��
C�
n�k�� 	 c	C

k
n 	 c	C

d��
n 	 c	Un�

We can calculate c	 as follows� Let Ck
n�t� 	� cntn � � � � and Ur�t� 	� artr � � � �

with r �	 n � �k � �� We �nd�
d

dt

��k��
H
h
w�k��
� Ck

n�t�
i

	 cn

�
d

dt

��k��
H
h
w��t�

�
����k��tn��k�� � � � �

�i

	 ����k��
cn
ar

�
d

dt

��k�� �
H
d

dt

w��t�Un�k���t� � � � ��

�

	 ����k��
cn
ar

�n � �k � ��

�
d

dt

��k��

Un��k���t� � � � ��

	 ����k��cn�n � �k � ��

�
d

dt

��k�� �
tn��k�� � � � �

�
	 ����k���n � ���k��cn �tn � � � �� 	 ����k���n � ���k��Ck

n�t��

�



where we used identities ������ ������ and ������� Thus ������ is proved in this case as
well�

Finally� we consider ������� From ����� and ������ respectively� we have

�Un 	 �Cd��
n 	 c

�
d

dt

�n�d�� h
�� � t��n�d������

i
	 c

�
d

dt

�n�d�� h
��� t��n�d���� � t���d������

i
	 c��� � t���d������C

�d����
n�d�� �

Hence� applying � once again and using ����� gives

��Un 	 ��Cd��
n 	 c�

�
d

dt

�d��
C
�d����
n�d�� 	 c�C

d��
n 	 c�Un�

By calculating the coe�cients of tn� we �nd c� 	 ����d����n and we arrive at �������
�

� An orthogonal decomposition of L��B
d� in terms

of ridge polynomials

Since we are interested in approximating functions f � L��Bd� by elements from
spaces of ridge functions� it is natural to �nd a decomposition of f in terms of funda�
mental building blocks of ridge functions� We shall show in this section that we can
take as the building blocks certain ridge polynomials� We begin by describing this
decomposition�

If f� g � L��Bd�� we de�ne the inner product

hf� gi �	
Z
Bd

f�x�g�x� dx� �����

This inner product induces the norm

kfkL��Bd� �	
�Z

Bd
jf�x�j� dx

����

�

We also de�ne� for f� g � L��Sd���� the inner product

�f� g� �	
Z
Sd��

f���g��� d� �����

and the norm

kfkL��Sd��� �	
�Z

Sd��
jf���j� d�

����

�

�



where d� stands for the area �volume� element on Sd�� the unit sphere in Rd�
The Gegenbauer polynomialsCd��

n are the building blocks for our decomposition�
Let

Un �	
�
hn�d��

�����
Cd��
n � n 	 �� �� � � � � �����

where hn�d�� is from ������ Then kUnkL��I�w� 	 � and hence fUng�n�� is a complete

orthonormal system for the weighted space L��I� w�� w�t� �	 wd���t� 	 ���t�� d��� � Of
course� Un depends on the space dimension d but we are suppressing this dependence
in our notation� The reader should think of the space dimension d as arbitrary but
�xed throughout�

Let Pn denote the set of all algebraic polynomials of total degree n in d real vari�
ables� That is� each P � Pn is a linear combination of monomials xm �	 xm�

� � � � xmd
d

with x �	 �x�� � � � � xd�� m is a d�tuple �m�� � � � �md� of nonnegative integers� and
jmj �	 m� � � � �� md � n�

The polynomials Un�� � x�� � � Sd��� are in Pn and Un�� � x� are orthogonal to
Pn�� in L��Bd� �proved in the appendix��Z

Bd
Un�� � x�P �x� dx 	 � for � � Sd�� and P � Pn��� �����

This is why the ridge polynomials Un�� � x� occur in our decomposition of L��Bd��

Theorem ��� Each function f � L��Bd� can be represented uniquely as

f
L�	

�X
n��

Qn�f�� �����

where
Qn�f�x� �	 �n

Z
Sd��

An�f� ��Un�� � x� d� �����

with
An�f� �� �	

Z
Bd

f�y�Un�� � y� dy� �����

and

�n �	
�n � ��d��
���	�d��

	
�n � ���n � �� � � � �n � d� ��

���	�d��
� �����

Moreover� the operators Qn� n 	 �� �� � � �� are the orthogonal projectors from L��B
d�

onto Pn 	Pn�� and the following Parseval identity holds

kfk�L��Bd� 	
�X
n��

kQn�f�k�L��Bd� 	
�X
n��

�nkAnk�L��Sd���� �����

We make next a few remarks which will help explain the nature of this decom�
position�

��



�i� For each n 	 �� �� � � �� the function Qn�f� is an algebraic polynomial �in d
variables� of degree n� Indeed� each of the Un�� � x� is a ridge polynomial of degree n
and Qn�f� is a linear combination of these�

�ii� For each n 	 �� �� � � �� the function An�f� ��� � � Sd��� is a spherical polyno�
mial of degree n� This follows from the fact that each of the Un�� � x�� x � Bd� is of
this type�

�iii� The constants �n� n 	 �� �� � � �� are eigenvalues which occur in the Radon
inversion formula �see ��������

�iv� Among other reasons� the polynomials Un occur in this formula because for
each � � Sd�� the weight wd���t� 	 ��� t���d����� is a constant multiple of the d� �
dimensional volume of the intersection of Bd with the hyperplane x � � 	 t�

�v� The orthogonality of the functions Qn�f� occurs because for each � � Sd���
the polynomial Un�x � �� is orthogonal to all algebraic polynomials of degree � n on
Bd �see �������

�vi� One can imagine that the integral representation of Qn�f� can be rewritten
as a discrete sum by using some sort of quadrature formula on Sd�� and thereby obtain
a discrete decomposition of f in terms of ridge polynomials� In the case d 	 �� one can
simply take the canonical quadrature formula for integrating spherical polynomials
�i�e� trigonometric polynomials� which uses equally spaced points on the unit circle�
This then gives the orthonormal system fUn�� � x�g� � � �n� n 	 �� �� � � �� where
�n �	 f�cos k	�n� sin k	�n�gnk��� This was used in 
DOP� as the vehicle for proving
approximation results for ridge functions in two variables� In the case d � �� we know
no analogous quadrature formula� This necessitates a substantial e�ort �executed in
the following section� to derive �less elegant� quadrature formulas which can be used
to discretize the integral representation of Qn�f��

�vii� The decomposition of Theorem ��� is in essence known �see� e�g�� 
RK���
However� we could �nd no reference which gives it in the above form�

There are several ways in which the decomposition of Theorem ��� can be de�
rived� One approach is to derive it from the theory of spherical harmonics� A second
approach is Radon transforms and in particular ����� is a rewriting of the Radon
inversion formula �see 
RK��� We shall brie�y explain this at the end of this section�

We shall give a simple and direct proof of this decomposition using fundamental
identities for the ridge polynomials Un�� � x�� � � Sd��� To keep our exposition more
�uid� we shall state these identities without proof and relegate the proofs to the
appendix�

We start with the following two fundamental identities �proved in the appendix��
for each �� � � Sd��� we haveZ

Bd
Un�� � x�Un�� � x� dx 	

Un�� � ��

Un���
� ������

��



and� for each � � Sd��� we haveZ
Sd��

Un�� � x�Un�� � �� d� 	
Un���

�n
Un�� � x�� ������

Proof of Theorem ���� Let f � L��B
d�� d � �� From Remark �i� and ������

it follows that Qn�f� is in Pn 	 Pn��� From identities ������ and ������� we have
Qn�g� 	 g whenever g�x� 	 Un�� � x�� � � Sd��� Therefore Q�

n 	 Qn and hence Qn is
a projector onto a subspace Yn of Pn 	 Pn��� Thus� to prove ������ it remains only
to show that

dim�Yn� 	 dim�Pn 	Pn��� 	 dim�Ph
n�� ������

where Ph
n denotes the space of all homogeneous polynomials of degree n�

To prove ������� we recall a few well�known facts about spherical harmonics
which can be found in Stein and Weiss 
SW�� Chapter �� see also 
Se�� Let Hn denote
the space of spherical harmonics of degree n� i�e� Hn is the set of those functions on
Sd�� which are the restriction to Sd�� of a function from Ph

n which is harmonic in
Bd� The spherical harmonics of degree n are orthogonal to those of dimension m �	 n
with respect to the inner product ������ We have

dim�Hn� 	 N�d� n� �	

�
n � d� �

n

�
�
�
n � d � �
n� �

�
������

and
dim�Ph

n� 	 dim�Hn 
Hn�� 
 � � � 
H��� ������

where � 	 � if n is even and � 	 � if n is odd�
Write

Kn�t� �	
N�d� n�

jSd��jC�d�����
n ���

C�d�����
n �t��

where jSd��j �	
R
Sd�� � d� 	 ��d��


�d���
is the surface area of Sd��� The function Kn�� � ��

is the reproducing kernel for Hn� i�e�Z
Sd��

S���Kn�� � ��d� 	 S���� S � Hn� ������

Moreover� a simple identity for Gegenbauer polynomials �see the appendix �A��� gives
that

Kn � Kn�� � � � �� K� 	
Cd��
n

jSd��j 	
�nUn
Un���

� ������

Hence� the right side of ������ is the reproducing kernel for Hn
Hn��
� � �
H�� i�e�Z
Sd��

S���
�n

Un���
Un�� � ��d� 	 S���� S � Hn 
Hn�� 
 � � � 
 H�� ������

��



Note that An�f� �� is a spherical polynomial of degree n since Un�� � y� is a
spherical polynomial of degree n in �� We have Un��t� 	 ����nUn�t� �see ������ and
hence An�f���� 	 ����nAn�f� ��� Therefore� An�f� � Hn 
Hn�� 
 � � � 
 H�� Thus�
Qn can be considered as a linear operator mapping Hn 
 Hn�� 
 � � � 
 H� into Yn�
On the other hand� after multiplying both sides of ����� by Un�� � x� and integrating
over Bd we obtainZ

Bd
Qn�f�x�Un�� � x� dx 	

Z
Sd��

An�f� ��
�
�n

Z
Bd
Un�� � x�Un�� � x� dx

�
d�

	
Z
Sd��

An�f� ��
�n

Un���
Un�� � �� d� 	 An�f� ���

where we used ������ and ������� Hence� An is an operator mapping Yn onto Hn 

Hn��
� � �
H� and it is the inverse operator of Qn� Therefore� dim �Yn� 	 dim �Hn

Hn�� 
 � � � 
 H�� which together with ������ implies �������

Since Qn�f� is in Pn 	Pn��� it is orthogonal to Qj�f�� j �	 n� and therefore we
have the �rst equality in ������ For the proof of the second equality in ������ we use
������ to writeZ

Bd
Qn�f�x�� dx 	 ��n

Z
Sd��

Z
Sd��

Z
Bd

An�f� ��An�f� ��Un�� � x�Un�� � x� dx d� d�

	 ��n

Z
Sd��

Z
Sd��

An�f� ��An�f� ��
Un�� � ��

Un���
d� d��

Since An�f� � Hn
Hn��
 � � �
H�� then we can use ������ to complete the integral
with respect to � above� We getZ

Bd
Qn�f�x�� dx 	 �n

Z
Sd��

An�f� ��� d��

This completes the proof of ����� and the theorem� �
In the same way that we have proved ����� of Theorem ��� we obtain the fol�

lowing formulas for calculating inner products�

hf� gi 	
�X
n��

�n

Z
Sd��

An�f� ��An�g� �� d�� ������

We next consider the decomposition ����� for ridge functions� Let r be a uni�
variate function in L��I� w�� w �	 wd��� Then

r�t� 	
�X
n��

�r�n�Un�t�� �r�n� �	
Z
I
r�t�Un�t�w�t� dt� ������

It follows that for any � � Sd��� the ridge function R�x� �	 r�� � x� has the represen�
tation

R�x� 	
�X
n��

�r�n�Un�� � x�� ������

��



Using ������ and ������ we see that

An�R� �� 	 �r�n�
Un�� � ��
Un���

� ������

Moreover� if R� and R� are two such ridge functions corresponding to r�� �� and r��
��� respectively� then from ������ ������ and ������� we have

hR�� R�i 	
�X
n��

�r��n��r��n�
Un��� � ���
Un���

� ������

There is another approach to deducing the decomposition of Theorem ��� which
we want to mention since it brings out the connections between this paper and Radon
transforms� For each f � L��Bd� the Radon transform is de�ned by

R�f  �� t� �	
Z
��
T
Bd

f�t� � y� dy� ������

where � � Sd��� t � 
��� ��� and �� �	 fy � Rd � y � � 	 �g� So� the integration is
over the intersection of the hyperplane y � � 	 t and Bd�

We can recover f from its Radon transform by using the Radon transform
inversion formula� The Radon transform inversion formula uses the operator �see e�g

L��

Kg�t� �	 Ktg�t� �	

	



�



�
����

d��
�

�����d��

�
d
dt

�d��
g�t� for d odd

���� d���
�����d��H

�
d
dt

�d��
g�t� for d even�

������

where H is the Hilbert transform �see ������� The following relation is the Radon
inversion formula for functions de�ned on Bd� for every su�ciently smooth function
f supported on Bd

f�x� 	
Z
Sd��

h���x � �� d� with h��� t� �	 KtR�f  �� t�� ������

Lemma ��� gives that the functions Un are eigenfunction for the operator K�w���

K�wUn� 	 �nUn� ������

We now show the idea of using the Radon inversion formula to derive a rep�
resentation of f in terms of the ridge polynomials fUn�x � ��g� Since fUng�n�� is a
complete orthonormal system for L��I� w�� we can expand R�f  �� ���w in terms of
the fUng�n�� to obtain

R�f  �� ��
w

	
�X
n��

An���Un� ������

��



with
An��� �	

Z
I
R�f  �� t�Un�t� dt 	

Z
Bd

f�y�Un�y � �� dy� ������

After multiplying both sides of ������ by the weight w and applying the operator
K �	 Kt we get

KR�f  �� �� 	
�X
n��

An���K 
wUn� 	
�X
n��

�nAn���Un�

where we used ������� Finally� we insert the above in ������ and �nd

f�x� 	
Z
Sd��

KR�f  ��x � �� d� 	
�X
n��

�n

Z
Sd��

An���Un�x � �� d�

which is the decomposition from Theorem ���� We leave the details of verifying this
approach to the reader�

� Discrete representation of functions and norms

In this section we shall deduce from Theorem ��� a discrete representation of functions
by ridge polynomials� To this end we shall use a cubature formula for integration on
Sd��� d � �� We need a cubature formula that is exact for all spherical polynomials
of degree n� In the case d 	 � we used in 
DOP� a quadrature formula with equally
spaced nodes on the unit circle� Unfortunately� we do not know any !equally spaced
points! on Sd��� d � �� Also� we do not know e�ectively any cubature formula with
near equally spaced nodes on Sd��� For this reason we shall use a cubature formula�
determined by using spherical coordinates on Sd��� The results of this section are
somewhat technical and the reader may just wish to read them roughly at �rst and
proceed to x��

The spherical coordinates �
� �� �	 �
�� 
�� � � � � 
d��� �� on Sd�� are de�ned as
usual by

�� 	 cos 
�� �� 	 sin 
� cos 
�� � � � � �d�� 	 sin 
� sin 
� � � � sin 
d�	 cos 
d���
�d�� 	 sin 
� sin 
� � � � sin 
d�	 sin 
d�� cos �� �d 	 sin 
� sin 
� � � � sin 
d�	 sin 
d�� sin��

� � 
j � 	� j 	 �� �� � � � � d � � � � � � �	� We shall denote these identities in
vector form brie�y by � �	 ��
� ��� In these coordinates� the surface element d� of
Sd�� becomes

d� 	 �sin 
��
d���sin 
��d�	 � � � sin 
d�� d
� d
� � � � d
d�� d� 	� J�
� d
 d�� �����

We have the following identity for integration in spherical coordinatesZ
Sd��

f��� d� 	
Z �

�
� � �
Z �

�

Z ��

�
f���
� ���J�
� d
� � � � d
d�� d�� �����

��



where J�
� is the Jacobian given by ������ We shall use this to de�ne our cubature�
We wish to construct a cubature that is exact for all spherical polynomials of

degree �n� Every spherical polynomial of degree �n can obviously be represented in
spherical coordinates as a linear combination of terms

�cos ��kd���sin ���d��
d��Y
j��

�cos 
j�
kj �sin 
j�

�j �����

where kj � �j � �� and maxfkj��j � j 	 �� �� � � � � d��g � ��d���n� Also� the Jacobian
J is represented in the same terms �see ������� So� we need quadrature formulae for
integration over 
�� �	� and 
�� 	� that are exact for trigonometric polynomial of degree
��d � ��n � d � ��

We shall use the following quadrature formula for integration on 
�� �	� with
respect to �

Q��k�g� �	
�kX
j��

�jg��j� �
Z ��

�
g��� d�� �����

where �j �	 �
�k�� � ��j

�k�� and �j �	 ��
�k�� � The quadrature ����� is exact for all

trigonometric polynomials of degree k �see 
Z�� Chapter X��
Since � � 
j � 	� we need a quadrature for integration over 
�� 	� that is exact

for all trigonometric polynomials of degree k� In addition to this� the quadrature
should have good localization properties� We also need to control �asymptotically�
the nodes and the coe�cients of the quadrature� Since we do not know any quadrature
like this� we shall construct one in the following lemma�

Lemma ��� For any k 	 �� �� � � � there exists a quadrature

Q	�k�g� 	
�kX
j��

�jg��j� �
Z �

�
g�
� d
 �����

with the following properties�
�a� Q	�k�g� is exact for all trigonometric polynomials of degree k�
�b� � � �� � �� � � � � � ��k � 	�

�j � �j�� � 	k��� j 	 �� �� � � � � �k � � �����

�c�

� � �j � c
�
�j�� � �j��

�
� j 	 �� �� � � � � �k� �����

where ��� �	 �� ��k�� �	 	 and c is an absolute constant�
The exact values of the nodes �j and the coe�cients �j of the quadrature �����

are given in Remark ��� below�

��



Proof� For symmetry reasons we shall prove the lemma with the interval of integra�
tion 
�� 	� replaced by 
�	��� 	���� We shall build a quadrature

Qk�g� 	
kX

j��k
�jg�
j� �

Z ���

����
g�
� d
 �����

with symmetric nodes 
j and coe�cients �j �
�j 	 
j� 
� �	 �� and ��j 	 �j�� Then
Qk�g� will be automatically exact for odd polynomials� Therefore� it is enough to
construct Qk�g� exact only for all even trigonometric polynomials of degree k� To
this end it is su�cient to have

Qk�P �cos 
�� �	
kX

j��k
�jP �cos 
j� 	

Z ���

����
P �cos 
� d
 	 �

Z ���

�
P �cos 
� d
 �����

for each algebraic polynomial P of degree k� We shall apply the substitution 
 �	

�
� �	 arccos

�
cos� 


�

�
to the last integral in ������ Simple calculations show that

"�
� �	
d

d


�
� 	

cos 

�q

� � cos� 

�

������

and hence 
�
� is increasing on 
�� 	� and maps 
�� 	� on 
�� 	���� We obtainZ ���

�
P �cos 
� d
 	

Z �

�
P
�

cos�



�

�
"�
� d
 	

�

�

Z �

��
P
�

cos�



�

�
"�
� d
� ������

where we used that the integrand is even� We now extend "�
� �	�periodically by

"�
� �	 j cos 

� j

q

� � cos� 

� �

We shall use the Dirichlet kernel Dk�u� �	 sin�k�����u
� sinu�� to interpolate the trigono�

metric polynomial of degreem� P
�
cos� 


�

�
	 P

�
��cos


�

�
at the points 
j �	 ��j

�k��
� j 	

��
�� � � � �
k� We have �see 
Z� Chapter X��

P
�

cos�



�

�
	

�

�k � �

kX
j��k

P
�

cos�

j
�

�
Dk�
� 
j��

This and ������ imply

Z ���

�
P �cos
� d
 	

�

�k � �

kX
j��k

P
�

cos�

j
�

�Z �

��
"�
�Dk�
 � 
j� d


	
kX

j��k
�jP

�
cos�


j
�

�
������

	 ��P
�

cos�

�

�

�
�

kX
j��

��jP
�

cos�

j
�

�
�

��



where

�j �	
�

�k � �

Z �

��
"�
�Dk�
� 
j� d
 ������

and we used that ��j 	 �j since " is even and 
�j 	 �
j�
We now de�ne the nodes and the coe�cients of our quadrature� Set


j �	 arccos
�

cos�

j
�

�
for j 	 �� �� � � � � k and 
j �	 �
�j for j 	 ������ � � � ��k�

Also� set

�j �	 ��j for j 	 �� �� � � � � k and �j �	 ��j for j 	 ������ � � � ��k�

We obtain by ������ ������ and the symmetry that quadrature ����� with the
above de�ned nodes and coe�cients is exact for all trigonometric polynomials of
degree m� It remains to prove that the nodes and the coe�cients of the quadrature
satisfy the required properties�

We have 
j � 
j�� 	 
���j��
j � 
j��� 	 "��j��
j � 
j��� for some �j �
�
j��� 
j� and hence� by �������

�p
�

�
cos


j
�

�
�	

�k � �
� 
j � 
j�� �

�
cos


j
�

�
�	

�k � �
�
	

k
� j 	 �� �� � � � � k� ������

Therefore� the proof will be completed if we show that

� � �j � ck�� cos

j
�
� j 	 �� �� � � � � k� ������

By ������ it follows that

�j 	 	��k � ����Sk�"��
j�� where Sk�"��
� �	 �
�

R �
�� "���Dk�� � 
� d�

is the kth partial Fourier sum of "� In order to simplify our further calculations we
shift " by 	 and obtain

��
� �	 "�
 � 	� 	
����sin 


�

�����r� � sin� 


�
�

The function � is even and� therefore� its Fourier coe�cients associated with sin �

are all equal to zero� Let

a� �	
�

�	

Z ��

�
��
� d
 and a� �	

�

	

Z ��

�
��
� cos �
 d
� � 	 �� �� � � �

be the Fourier coe�cients of � associated with cos �
� Obviously� a� � �� Let
� 	 �� �� � � � Then using integration by parts �twice� we get

a� 	 � �

	�

Z ��

�
���
� sin �
 d


	
�

	��

h
����	��� ������

i
� �

	��

Z ��

�
����
� cos �
 d


	
�

	��

Z ��

�
����
��� � cos �
� d
�

��



Therefore

a� 	
�

	��

Z ��

�
����
� sin� �


�
d
� ������

Simple calculations show that

���
� 	
�

�
cos




�

��
� � sin




�

�	��
and ����
� � � for � � 
 � �	�

This and ������ imply that a� � � and

ja�j � �

	��

Z ��

�
j����
�j d
 	 � �

	��

Z ��

�
����
� d
 	 � �

	��

h
����	��� ������

i
	

�

	��
�

Thus� we have

� �

	��
� a� � �� � 	 �� �� � � �� ������

Therefore ��
� 	 a� �
P�

��� a� cos �
� where a� � � and a� � �� � 	 �� �� � � �� and
hence

Sk����
� 	 a� �
kX

���

a� cos �
 � a� �
kX

���

a� 	 Sk������

	 Sk������� ���� 	 �
�X

��k��

a� � ��

Thus Sk����
� � � for 
 � 
�	� 	� and hence Sk�"��
� � � for 
 � 
�	� 	� which
implies the lower bound in �������

The inequalities ������ imply

k"� Sk�"�kC 	 k�� Sk���kC � ck���

Using this� we obtain

j�jj � ck��jSk�"��
j�j � ck�� �j"�
j�j� k"� Sk�"�kC�

� ck��
�

cos

j
�

� k��
�
� ck��

�
cos


j
�

� cos

k
�

�
� ck�� cos


j
�
�

where we used that cos�
k��� 	 cos �	k���k � ��� � ck��� Thus the upper estimate
in ������ is proved� Lemma ��� is proved� �

Remark ��� The exact values of the nodes �j and the coe�cients �j of the quadra�
ture ����� from Lemma ��� are the following�

�j 	
	

�
� arccos

�
cos�

�k � j�	

�k � �

�
� j 	 �� �� � � � � k�

and �j 	 	 � ��k�j � j 	 k � �� k � �� � � � � �k�

��



�j 	
�

�k � �

Z �

��
cos




�

�
� � cos�




�

�����
Dk

�

� �	�k � j�

�k � �

�
d
� j 	 �� �� � � � � k

and �j 	 ��k�j � j 	 k � �� k � �� � � � � �k� where Dk is the Dirichlet kernel of degree
k�

We are now in a position to construct our cubature formula for integration over
Sd�� �d � ��� We shall use ������ ����� and the quadratures from ����� and ������

De�nition of cubature Qn� Given n 	 �� �� � � � we select k �	 ��d � ��n � d � ��
Let Jn be the set of all indices j �	 �j�� � � � � jd��� such that � � j� � �k� i�e� Jn �	
f�� �� � � � � �kgd��� Note that the cardinality of Jn is 
Jn 	 ��k � ��d�� � nd��� Set
�j �	 ��j�� � � � � �jd���� �j �	 �jd�� � �j �	 ���j� �j�� and �j �	 J��j��jd��

Qd��
��� �j� � where

�j � �j� �j� and �j are the nodes and the coe�cients of quadratures ����� and ������
respectively� and J is from ������ We de�ne

Qn�f� �	
X
j�Jn

�jf��j� �
Z
Sd��

f��� d�� ������

When it is possible we shall write this cubature with the following simpler indices�
Let �n be the set of all nodes � 	 �j� and �� �	 ��j �	 �j� j � Jn� Then cubature

������ can be rewritten in the form

Qn�f� �	
X
���n

��f��� �
Z
Sd��

f��� d�� ������

Observe that 
�n � nd���
As we mentioned in the beginning of this section� every spherical polynomial of

degree �n can be represented in spherical coordinates as a linear combination of terms
like those in ����� and the Jacobian J is represented in a similar way �see ������� On
the other hand� quadratures ����� and ����� are exact for trigonometric polynomials
of degree k �	 ��d� ��n � d� �� Therefore �see ������� cubature ������ �or ������� is
exact for all spherical polynomials of degree �n� i�e� for every spherical polynomial S
of degree � �n we have

Qn�S� �	
X
���n

��S��� 	
Z
Sd��

S��� d�� ������

Note that �� � � and� since ������ holds for S 	 �� then

X
���n

�� 	
Z
Sd��

� d� 	� jSd��j� ������

��



Identity ������ implies discrete representations of the projection Qm�f� of any
f � L��Bd� onto Pm 	 Pm�� and kAm�f�kL��Sd��� �see ����� and ����� from Theo�
rem ����� Namely� since Am�f� ��Um�x � �� and A�

m�f� ��� for m � n� are spherical
polynomials of degree � �m � �n� then

Qm�f�x� �	 �m

Z
Sd��

Am�f� ��Um�x � �� d� 	 �m
X
���n

��Am�f� ��Um�x � �� ������

and
kAmk�L��Sd��� �	

Z
Sd��

jAm�f� ��j� d� 	
X
���n

��jAm�f� ��j�� ������

Since quadratures ����� and ����� have good localization properties� then cuba�
ture ������ �or ������� has such properties� We shall use them to prove the following
lemma�

Lemma ��� Let n 	 �� �� � � �� m 	 �� �� � � �� and let� for � � ��� 	�� Km�cos �� �	
c� minfmd���md����m��dg with c� � � a constant� Then� we have

Qn�Km�� � ��� � c
� � �m�n�d��� for � � Sd��� ������

where Qn is the cubature from ������ and c depends only on d and c��

Proof� In what follows� we shall assume that n � n�� where n� is su�ciently large
and depends only on the dimension d� Estimate ������ obviously holds for n � n�
by ������� We �rst construct a tiling of Sd�� which is determined by the nodes of
cubature ������� We associate with each node �j the spherical box �tile� Tj consisting
of all points � � Sd�� for which � 	 ��
� �� with

�
� �� � 
aj�� aj����� � � �� 
ajd��� ajd������ 
bjd��� bjd������

where aj �	 �
���j � �j��� and bj �	 �

���j � �j��� with �j from ����� and �j from ������
Observe that �j � Tj is the �spherical� center of Tj� Obviously Tj

T
Ti 	 �� j �	 i� and

the tiles Tj cover Sd�� excluding small regions around the poles� The most important
property of our cubature is that

� � �j � c
Z
Tj

� d� 	� cjTjj for j � Jn� ������

This property follows readily by ������ the de�nition of �j from ������ and the de�nition
of our cubature �see ��������

The second important property of our tiling is that the diameter of each tile Tj
is � cn��� We let ���� �� �	 arccos � � �� �� � � Sd�� denote the angular distance on
Sd�� �the angle between vectors � and ��� It is easily seen that ���� �� satis�es the
axioms for a distance on Sd��� Since �j��j�� � cn��� by ������ and �j��j�� � cn���
by the de�nition of �j � then

supf���� �� � �� � � Tjg � c�n
��� ������

��



where c� depends only on d�
Suppose that � � Sd�� is �xed� We select a new coordinate system such that � 	

e�� �	 ��� �� � � � � �� is its �rst coordinate vector� This can be done by a suitable rotation
of the old coordinate system� For � � Sd��� we shall denote by 
� �	 �
��� � � � � 


�
d���

and �� the new spherical coordinates of ��
We de�ne� for � 	 �� �� � � � � n�

Z� �	

�
� � Sd�� �

	�� � ��

n
� ���� e��� �

	�

n

�

	

�
� � Sd�� �

	�� � ��

n
� 
�� �

	�

n

�

and

Z�
� �	

�
� � Sd�� � max

�
	�� � ��� c�

n
� �	

�
� 
�� � min

�
	� � c�

n
� 	
��

�

where c� is from ������� Obviously
Sn
��� Z� 	 Sd���

Let T� be the set of all tiles Tj with centers �j � Z� � It follows by ������ thatS
T�T� T � Z�

� and hence

X
T�T�

jT j � jZ�
� j �	

Z
Z��

� d� � c
Z
Z�

� d� 	� cjZ�j� � 	 �� �� � � � � n� ������

We are now ready to estimate Qn�Km�� � ���� If � 	 �� then we obtain� using
������� ������� and the assumptions of the lemma�X

�j�Z�

�jKm��j � e��� � cmaxfKm�cos 
�� � � � 
�� � 	�ng X
T�T�

jT j

� cmd��jZ�j � cmd��
Z ��n

�
sind�� 
�� d


�
� � c�m�n�d���

If � � �� thenX
�j�Z�

�jKm��j � e��� � cmaxfKm�cos 
��� � 	�� � ���n � 
�� � 	��ng X
T�T�

jT j

� cKm

�
cos

	�� � ��

n

�
jZ�

� j � cKm

�
cos

	�

n

�
jZ�j � c

Z
Z�
Km�� � e��� d��

where we used that Km

�
cos ������

n

�
� cKm

�
cos ��

n

�
� � � �� which follows by the

de�nition of Km�cos �� from the assumptions of the lemma� Therefore

X
j�Jn

�jKm��j � e��� � c�m�n�d�� � c
Z
Z
Km�� � e��� d�� ������

��



where Z �	
Sn
��� Z�� We obtain� using again the de�nition of Km�cos ���Z

Z
Km�� � e��� d� 	 jSd��j

Z �

��n
Km�cos 
��� sind�� 
�� d


�
�

� c
Z �

�
minfmd���md����m
���

dg�
���d�� d
�� � c ���

The above estimates and ������ imply ������� �
We shall deal with discrete sums of spherical polynomial values� For this� we

need a rapidly decaying reproducing kernel for the space of spherical polynomials of
degree m� The following well�known proposition gives us such a kernel�

Proposition ��� There exists a constant m� 	 m��d� such that for every m � m�

there exists an algebraic polynomial Wm of degree dm with the properties�
�a�

S��� 	
Z
Sd��

Wm�� � ��S��� d�� � � Sd���
for each spherical polynomial S of degree � m�

�b�

jWm�cos � �j � c� minfmd���md����m� �dg for � � � � 	� ������

and hence
�c� Z

Sd��
jWm�� � ��j d� � c ��� � � Sd��� ������

where c� and c are independent of m and ��

Since we do not have a good reference for Proposition ���� we shall show how it
can be deduced from the following results of E� Kogbetliantz and E� Stein �see also

P���

Proposition ��� 
K� Let Sm�t� �	
Pm

����� � ��C�
� �t�� � � �� m 	 �� �� � � �� and let

����
m be the Ces	aro means of order � of Sm� i�e�

����
m �t� �	

�
A�
m

��� mX
���

A�
m���� � ��C�

� �t� with A�
� �	 
�������


�����
����� � ������

Then� for �� � � � �� � ��

j����
m �cos ��j � cmin

�
�m � ������� �m� ������

��
sin

�

�

����
�
� � � � � 	� ������

with c depending only on ��

��



Proposition ��� 
St� For each positive integer r and for m 	 �� �� � � �� there exist
r�� parameters 
��m�� � � � � 
r���m� �depending only on m and r� which are uniformly
bounded� j
��m�j � A� A independent of m� and there exists a �xed integer N � so
that the following holds�

If
P�

��� a� is a series of real numbers and if ��r�
m � m 	 �� �� � � �� are the Ces	aro

means of order r of the partial sums Sm� m 	 �� �� � � �� of this series �see �������� then

� �r�m �	 
��m��
�r�
m�� � 
��m��

�r�
�m�� � � � � � 
r���m��

�r�
�r���m��

can be represented in the form

� �r�m 	
mX
���

a� �
�r���mX
��m��

��a� if m � N �

where �� are constants depending on m and r�

Proof of Proposition ���� We have already mentioned in ������ that

Km�t� �	
N�d�m�

jSd��jC�d�����
m ���

C�d�����
m �t�

gives the reproducing kernel Km�� � �� for Hm� Therefore�
Pm

���K��� � �� is a repro�
ducing kernel for all spherical polynomials of degree � m� Simple calculations show
that

Km�t� 	 �
h
jSd��j�d� ��

i��
�m � ��C�

m�t� with � �	 �d� �����

Therefore� �
h
jSd��j�d� ��

i��Pm
����� � ��C�

� �t� gives a reproducing kernel for the
spherical polynomials of degree � m�

We now apply Proposition ��� with � �	 �d����� and � �	 ���� 	 d��� Then
we apply Proposition ��� to the resulting Ces#aro means f��r�

� g with r �	 � 	 d � �

to conclude that Wm �	 �
h
jSd��j�d� ��

i��
� �r�m satis�es ������ �by ������ and since


��m� are uniformly bounded� and Wm�� ��� is a reproducing kernel for the spherical
polynomials of degree � m �by Proposition ����� �

Lemma ��� and Proposition ��� allow us to estimate discrete lp��n� norms of
spherical polynomials by their Lp�Sd��� norms� In this part we use ideas from 
O��

Lemma ��� Let n 	 �� �� � � �� and let m � m�� where m� is from Proposition ����
Then for every spherical polynomial S of degree m and for � � p �� we have

X
���n

��jS���jp � c
� � �m�n�d���
Z
Sd��

jS���jp d�� ������

where �� and �n are from ������� and c is independent of S� n and m�

��



Proof� By Proposition ��� we get S��� 	
R
Sd�� Wm�� ���S��� d�� � � �n� We obtain�

using H$older�s inequality�

jS���j �
Z
Sd��

jWm�� � ��S���j d� 	
Z
Sd��

jWm�� � ��j����pjWm�� � ��j��pjS���j d�

�
�Z

Sd��
jWm�� � ��j d�

�����p �Z
Sd��

jWm�� � ��jjS���jp d�
���p

and hence

jS���jp � Ap��
Z
Sd��

jWm�� � ��jjS���jp d�� where A �	
R
Sd�� jWm�� � ��j d��

We now multiply both sides of the above inequality by �� and sum over � � �n to
obtain

X
���n

��jS���jp � Ap��
Z
Sd��

�� X
���n

��jWm�� � ��j
�A jS���jp d�

� Ap�� max
��Sd��

Qn�jWm�� � ��j�
Z
Sd��

jS���jp d��

It follows� by ������� that jWm�� � ��j � Km�� � ��� where Km is de�ned in Lemma ���
with c� from Proposition ���� Then Proposition ��� and Lemma ��� imply

max
��Sd��

Qn�jWm�� � ��j� � max
��Sd��

Qn�Km�� � ��� � c
� � �m�n�d��� and A � c

which completes the proof of Lemma ���� �
The following lemma relates the L��Sd��� norms and discrete l���n� norms of

spherical polynomials written in terms of �mUm�� ����Um���� the reproducing kernel
for the space Hm 
Hm�� 
 � � � 
H� �see ��������

Lemma ��� Let n 	 �� �� � � �� and let c���� � � �n� be real constants� Let m � m��
where m� is from Proposition ���� Then� the spherical polynomial

S��� �	
X
���n

��c���
�m

Um���
Um�� � ��

satis�es
kSk�L��Sd��� � c
� � �m�n�d���

X
���n

��jc���j�� ������

Proof� Using ������ we get

kSk�L��Sd��� 	
Z
Sd��

jS���j� d�

	
X
���n

X

��n

���
c���c���

�
�m

Um���

�� Z
Sd��

Um�� � ��Um�� � �� d�

��



	
X
���n

X

��n

���
c���c���
�m

Um���
Um�� � �� 	

X

��n

�
c���S���

�
�� X

��n

�
jc���j�
�A����� X


��n
�
jS���j�

�A���

�

By Lemma ���� the last quantity above does not exceed c
� � �m�n�d���
�
�kSkL��Sd����

Finally� dividing by kSkL��Sd��� completes the proof of the lemma� �

� Smoothness spaces in L��B
d�

In this section� we shall recall results about approximation by algebraic polynomials�
As earlier� we let Pn denote the space of algebraic polynomials in d�variables� For
n � �� let

En�f� �	 En�f�L��Bd� �	 inf
P�Pn

kf � PkL��Bd�

be the error in approximating f � L��Bd� by algebraic polynomials P of degree � n�
By Theorem ��� we have the following representation of the polynomial Pn�f�x� of
best L��Bd��approximation to f �

Pn�f�x� 	
nX

m��

�m

Z
Sd��

Am���Um�x � �� d�� �����

where
An��� �	 An�f� �� �	

Z
Bd

f�y�Um�y � �� dy�
Since Am���Um�x � �� is a spherical polynomial of degree � �m � �n in �� we can use
the quadrature formula ������ to obtain

Pn�f�x� 	
X
���n

��
nX

m��

�mAm���Um�x � ��� �����

From Theorem ���� we have

En�f�� 	 kf � Pn�f�k�L��Bd� 	
X
m�n

�mkAm�f�k�L��Sd���
� X

m�n

md��kAm�f�k�L��Sd���� �����

For 
 � �� let W 
�L��Bd�� be the Sobolev space for the domain Bd� When

 	 k is an integer� then a function f � L��Bd� is in W k�L��Bd�� if and only if its
distributional derivatives D�f of order k are in L��Bd�� and

jf j�W k�L��Bd�� �	
X
j�j�k

kD�fk�L��Bd�

��



gives the semi�norm for W k�L��Bd��� The norm for W k�L��Bd�� is obtained by adding
kfkL��Bd� to jf jW k�L��Bd��� For other values of 
� we obtain W 
 as the interpolation
space

W 
�L��B
d�� 	 �L��B

d��W k�L��B
d���	��� 
 	 
�k� � � 
 � k�

given by the real method of interpolation �see� e�g�� Bennett and Sharpley 
BS���
A fundamental result in approximation known as the Jackson theorem states

that
En�f� � c�k�n�kkfkW k�L��Bd��� �����

where the norm on the right can be replaced by the semi�norm if k is an integer�
This theorem can be deduced easily from the results on univariate approximation in
Chapter � of 
DL�� By interpolation �see� e�g�� 
DL� Chapter ���� one obtains

�X
n��


n
En�f���n�� � c�
�kfk�W��L��Bd��� 
 � �� �����

with c�
� depending at most on 
� From ����� and ������ it is easy to deduce that

�X
n��

n�
�d��kAn�f�k�L��Sd��� � c�
�kfk�W��L��Bd��� 
 � �� �����

with c�
� depending at most on 
�

� Approximation of functions in L��I� w�

We shall also need certain results about the approximation of univariate functions
in L��I� w� where I �	 
��� �� and w �	 wd��� As we know by x�� the Gegenbauer
polynomials fUmg�m�� form a complete orthonormal system for L��I� w� �see �������
For any g � L��I� w� we have

g 	
nX

m��

�g�m�Um with �g�m� �	
Z
I
g�s�Um�s�w�s� ds� �����

We shall use approximation of functions in L��I� w� as an intermediate tool
in establishing our results on ridge approximation� Let Pn�I� denote the space of
univariate algebraic polynomials of degree � n� For a function g � L��I� w�� we let

En�g�L��I�w� �	 inf
p�Pn�I�

kg � pkL��I�w�

be the error in approximating g by the elements of Pn�I�� The polynomial

pn �	
nX

m��

�g�m�Um �����

��



is the best L��I� w� approximation to g by elements of Pn�I�� and we have

En�g��L��I�w� 	 kg � pnk�L��I�w� 	
X
m�n

j�g�m�j�� �����

We introduce the univariate Sobolev spaces W 
�L��I� w��� 
 � R� whose norms
are de�ned by

kgk�W��L��I�w��
�	

�X
m��


�m� ��
j�g�m�j��� �����

It follows that for each g � W 
�L��I� w���

En�g�L��I�w� � c�
�n�
kgkW��L��I�w��� �����

Moreover� similar to ������ we have

�X
n��


n
En�g�L��I�w��
�n�� � c�
�kgk�W��L��I�w��

� 
 � �� �����

There is also a Bernstein type inequality for polynomials in Pn�I� with respect
to L��I� w� which follows trivially from the de�nition� for every p � Pn�I� and 
 � ��

kpkW��L��I�w�� � �n � ��
kpkL��I�w�� �����

It is well known �see 
DL� Chapter ��� that companion inequalities like ����� and
����� imply a characterization of approximation spaces by interpolation spaces� In
our context� the approximation spaces are the Sobolev spaces W 
�L��I� w�� de�ned
by ����� and we therefore obtain for each � � 
 � k�

W 
�L��I� w�� 	 �L��I� w��W k�L��I� w��	��� 
 	 
�k� �����

Further properties of the spaces W 
�L��I� w�� are given in x��

� Approximation by ridge functions

In this section� we assume that Xn is a subspace of L��I� w�� w 	 wd��� of dimension
n with the following property� There is a real number s � � such that� for each
univariate function g � W s�L��I� w��� there is a function r � Xn which provides the
Jackson estimate

kg � rkL��I�w� � c�n
�skgkW s�L��I�w��� �����

with c� a constant independent of g and n�
We de�ne Yn to be the space of functions R in d variables of the form

R�x� 	
X
���n

r��x � ��� r� � Xn� � � �n� �����

where �n is the set of vectors in Sd�� from ������� Then� Yn is a linear space of
dimension � n
�n � cnd� We prove the following theorem about approximation
from Yn�

��



Theorem ��� Let Xn� n 	 �� �� � � �� satisfy inequality ����� for some s � �� If f is a

function from the space W s� d��
� �L��Bd��� then there is a function R in Yn such that

kf �RkL��Bd� � cn�s�
d��
� kfkW s��d������L��Bd�� �����

with c a constant depending only on s and d�

Remark ��� If s��d������� is an integer and the space Yn contains Ps��d��������
then kfkW s��d������L��Bd�� can be replaced by the semi�norm jf jW s��d������L��Bd���

An important element of the proof of Theorem ��� is the idea to get rid of
the !low frequencies! when approximating� To this end we shall use the following
geometric construction which was proven for us by Boris Kashin�

Lemma ��� Let H be a Hilbert space with norm k � k and let A� B � H be �nite
dimensional linear subspaces of H with dimA � dimB� If there exists �� � � � � ����
such that

sup
x � A
kxk � �

inf
y � B

kx� yk � �� �����

then there is a constant c depending only on � and a linear operator L � A� B such
that for every x � A

kLx� xk � c inf
y � B

kx� yk� �����

and
Lx� x�A �Lx� x is orthogonal to A��

Proof� See 
DOP�� Lemma �� �
Proof of Theorem ���� Estimate ����� trivially holds if n � m�� where m� 	 m��d�
is the constant from Proposition ����

Suppose that n � m�� Let P 	 Pn be the polynomial in Pn given by ����� �or
������� Since P is the best L��Bd� approximation to f � it satis�es �see ������

kf � PkL��Bd� � cn�s��d�����kfkW s��d������L��Bd�� �����

with c and all subsequent constants in this proof depending only on s and d� We
shall approximate P by an element R of YN � N 	 k�n� where k� is a su�ciently large
constant depending only on s and d�

We have Am�P� �� 	 Am�f� ��� m � n� and Am�P� �� 	 �� m � n� Since
f � W s��d������L��Bd��� we know from ����� that

nX
m��

�m � ���s���d���kAm�f�k�L��Sd��� � ckfk�W s��d������L��Bd��� �����

��



From this� using ������� we obtain

nX
m��

�m� ���s���d��� X
���n

��j�Am�f� ���j� � ckfk�W r��d������L��Bd��� �����

We introduce the univariate polynomials

p��t� �	
nX

m��

�mAm�f� ��Um�t� 	
nX

m��

�mAm�P� ��Um�t�� � � �n� �����

We have� by ������ and ������

P �x� 	
nX

m��

�m
X
���n

��Am�P� ��Um�x � �� 	
X
���n

��p��x � ��� ������

According to ������ we have

k����� p�k�W s�L��I�w�� 	
nX

m��

�m � ���s��m��jAm�f� ��j�

�
nX

m��

�m � ���s���d�����jAm�f� ��j��

Hence� from ������

X
���n

k����� p�k�W s�L��I�w��
� c

nX
m��

�m � ���s���d��� X
���n

��j�Am�f� ���j�

� ckfk�W s��d������L��Bd��� ������

We shall approximate each polynomial p� by elements of XN � We apply Lemma ���
in the following setting� We take for H the Hilbert space L��I� w� and take A 	 Pn�I�
and B 	 XN with N � k�n and k� a positive integer� We next show that if k� is
large enough then the assumption ����� is satis�ed� We mentioned earlier in �����
that Pn�I� satis�es the Bernstein inequality

kpkW s�L��I�w�� � �n � ��skpkL��I�w�� p � Pn�I��

If p � Pn�I� then� from this Bernstein inequality and from ������ there is an r � XN

such that

kp � rkL��I�w�� � c�N
�skpkW s�L��I�w�� � c�N

�s�snskpkL��I�w� � c��
sk�s� kpkL��I�w��

Thus� if k� is large enough� condition ����� is satis�ed� Therefore� for each � � �n�
we can �nd r� � XN such that r� � p� � Pn�I� with respect to the inner product in
L��I� w� and� by ����� and ������

kp� � r�k�L��I�w� � cn��skp�k�W s�L��I�w���

��



Therefore

r� � p� 	
�X

m�n��

�r��m�Um ������

with
�r��m� �	

Z
I
r��s�Um�s�w�s� ds

and �X
m�n��

j�r��m�j� 	 kpw � r�k�L��I�w� � cn��skp�k�W s�L��I�w��
� ������

We de�ne
R�x� �	

X
���n

��r��x � ��

which is an element of YN � Then we have� by ������ and �������

R�x�� P �x� 	
X
���n

�X
m�n��

���r��m�Um�� � x� 	
�X

m�n��

X
���n

���r��m�Um�� � x��

We write
Rm�x� �	

X
���n

���r��m�Um�x � ���

We have by Theorem ��� �see also ������ � �������

Rm�x� 	 �m

Z
Sd��

Am�Rm� ��Um�� � x� d��

where

Am�Rm� �� 	
Z
Bd

Rm�y�Um�y � �� dy 	
X
���n

���r��m�
Z
Bd
Um�� � y�Um�� � y� dy

	
X
���n

���r��m�
Um�� � ��

Um���
�

We now use Theorem ��� and Lemma ��� to obtain

kRmk�L��Bd� 	 �mkAm�Rm� ��k�L��Sd��� 	 ���m k X
���n

���r��m�
�m

Um���
Um�� � ��k�L��Sd���

� c���m �m�n�d��
X
���n

��j�r��m�j� � cn�d��
X
���n

��j�r��m�j��

where we used that �m � md�� �see ������� From this� ������� and ������� we �nd�
using the Parseval identity ������

kR� Pk�L��Bd� 	
�X

m�n��

kRmk�L��Bd� � cn�d��
�X

m�n��

X
���n

��j�r��m�j�

��



	 cn�d��
X
���n

��
�X

m�n��

j�r��m�j�

� cn��s�d��
X
���n

k����� p�k�W s�L��I�w��

� cn��s�d��kfk�W s��d������L��Bd���

Thus there is a function R � YN � N 	 k�n� such that ����� holds� Theorem ��� is
now proved� �

Remark ��� As in 
DOP�� it is possible to prove Theorem ��� without using Lemma ����
In place of this lemma one uses a slightly stronger assumption than estimate ������
The corresponding proof would be more constructive than the present one� We do not
provide the details of this approach but instead refer the reader to 
DOP��

	 Elimination of the weight w

The result of x� �Theorem ���� gives su�cient conditions on a sequence of univari�
ate spaces Xn� n 	 �� �� � � �� in order that the spaces Yn de�ned by ����� with �n

from ������ provide approximation rates for functions in Sobolev spaces W 
�L��Bd��
comparable to polynomials and splines� However� the assumption ����� imposed on
Xn is inconvenient for direct application because of the appearance of the weight
w�t� �	 wd���t� �	 ��� t���d������ We shall show in this section how the weight factor
w can be avoided so that the result of x� applies more directly� We shall consider ap�
proximation on the ball Bd

��� �	 fx � Rd � jxj � ���g rather than Bd� Approximation

on Bd or other balls follows by a change of variables�
We begin by assuming that we have in hand n�dimensional linear spaces Zn of

univariate functions de�ned on J �	 
����� ���� which satisfy a Jackson type estimate
similar to ����� but with weight 	 �� Let Wm�L��J��� m 	 �� �� � � �� be the Sobolev
space of functions g � L��J� such that g�m� is in L��J�� The semi�norm and norm for
Wm�L��J�� are de�ned by

jgjWm�L��J�� �	 kg�m�kL��J�  kgkWm�L��J�� �	 kg�m�kL��J� � kgkL��J���
For � � s � m not an integer� we de�ne W s�L��J�� by interpolation�

W s�L��J�� �	 �L��J��Wm�L��J��	��� 
 �	 s�m� �����

with the norm the interpolation space norm� For a given value of s� di�erent values
of m � s give equivalent norms �see 
DL���

Our assumption on Zn is that for a certain �xed value of s� we have that for
each g � W s�L��J��� there is a function �n � Zn such that

kg � �nkL��J� � c�s�n�skgkW s�L��J�� �����

��



with the constant c�s� depending only on s�
Let Xn be the space of univariate functions r such that for some p � Pn�I� and

some � � Zn

r�t� 	

�
p�t�� t � I n J �
��t�� t � J �

�����

We shall show that under the assumption ����� on the Zn� the spaces Xn� n 	
�� �� � � �� satisfy the assumption ������ To prove this� we recall the de�nition ����� of
the spaces W 
�L��I� w�� and the operator � of �������

�g �	

�
d

dt

�d��

wg� � �����

According to ������� we have ��Un 	 ����d����nUn� Since �n � nd�� �see �������� it
follows that for each g � Wm��L��I� w��� � 	 ��d � ��� m 	 �� �� � � �� we have

kgkWm��L��I�w�� � k��mgkL��I�w� �����

with the constants of equivalency depending only on d�

Lemma ��� For each m 	 k�� with � �	 ��d � �� and k a nonnegative integer� we
have

kgkWm�L��J�� � c�d�m�kgkWm�L��I�w�� for g � Wm�L��I� w�� �����

with the constant c�d�m� depending only on d and m�

Proof� We �rst observe that the weight w is strictly positive on J and� therefore�
w�� is in�nitely times di�erentiable on J � Then the following identity holds

g���d���� 	
��d�����X

j��

ujg
�j� � u��d�����g� � 	 �� �� � � � � �����

where uj are obtained from w�� and its derivatives� Indeed� ����� can be proved by
induction on �� For � 	 �� ����� follows from Leibniz� formula for di�erentiating the
product g 	 w���wg�� Suppose that ����� holds for some � � �� Then one writes ��g

as w��
�
w��g

�
and di�erentiates both sides of ����� d� � times to prove it for � � ��

It follows from ������ with � 	 �k and m 	 k�� that

kg�m�kL��J� � c
m��X
j��

kg�j�kL��J� � ck�kgkL��J�� �����

We shall use next the following well�known inequality �see e�g� 
BS��

kg�j�kL��J� � c
�
��jkgkL��J� � �m�jkg�m�kL��J�

�
� j 	 �� �� � � � �m� �����

��



where � � � is arbitrary and c depends only on m� Combining ����� with ����� we
get� for � � � � ��

kg�m�kL��J� � c���m��kgkL��J� � c��kg�m�kL��J� � c�k�kgkL��J�� ������

where c� � � is independent of �� We now select � such that c�� 	 ��� and bring the
second term on the right in ������ to the left�hand�side� We obtain

kg�m�kL��J� � c�kgkL��J� � k�kgkL��J��
� c�kwgkL��I� � kw�kgkL��I��
� ckgkWm�L��I�w���

�

Theorem ��� If the sequence of spaces Zn� n 	 �� �� � � �� satis�es ������ then the
spaces Xn� n 	 �� �� � � �� de�ned by ����� satisfy the Jackson estimates ������ i�e� for
each univariate function g � W s�L��I� w��� there is a function r � Xn which provides
the Jackson estimate

kg � rkL��I�w� � cn�skgkW s�L��I�w��� ������

with c a constant independent of g and n�

Proof� Consider the linear operator T that associates with every function g �
L��I� w� the restriction of g on J � Since w is strictly positive on J � T is a bounded
operator from L��I� w� into L��J�� By Lemma ���� T is bounded from Wm�L��I� w��
into Wm�L��J�� for each m 	 �k�d � ��� k 	 �� �� � � �� This implies that� for each
� � s � �k�d � �� and 
 �	 s���k�d � ���� we have by interpolation �see ����� and
������ that for each g � W s�L��I� w���

kgkW s�L��J�� � kgk�L��J��W �k�d����L��J���
���

� ckgk�L��I�w��W �k�d����L��I�w���
���

� kgkW s�L��I�w����

Now� given g � W s�L��I� w��� we let � � Zn satisfy ������ Then� from ������

kg � �kL��J� � cn�skgkW s�L��J�� � cn�skgkW s�L��I�w���

Similarly� let p be the best approximation in L��I� w� to g from Pn�I� � Then� from
������

kg � pkL��I�w� � n�skgkW s�L��I�w���

It follows that the function r � Xn de�ned by ����� for these � and p satis�es ��������

��



Theorem ��� If the sequence of spaces Zn� n 	 �� �� � � � � satisfy ������ then for any
function f � W s��d������L��Bd

������ there are functions r� � Zn such that

R�x� 	
X
���n

r��� � x� ������

satis�es
kf �RkL��Bd

���
� � cn�s��d�����kfkW s��d������L��B

d
���

�� ������

with c independent of f and n�

Proof� We �rst recall �see e�g� 
A� Chapter IV�� that f can be extended to a function
f� de�ned on all of Rd such that f� vanishes outside of Bd

	�� and

kf�kW s��d������L��Bd�� � ckfkW s��d������L��Bd
���

��

with a constant c depending only on s and d�
We de�ne Xn as in ������ From Theorem ���� we obtain that condition ����� is

satis�ed� Therefore� from Theorem ��� there are functions r� � Xn� � � �n� such
that the function

R�x� 	
X
���n

r��� � x�

satis�es

kf� �RkL��Bd� � cn�r��d�����kf�kW r��d������L��Bd��

� cn�r��d�����kfkW r��d������L��Bd
���

��� ������

On the ball Bd
���� f� 	 f and r� is in Zn for each � � �n� Therefore� ������ follows

from ������� �


 Examples and further remarks

In this section� we shall give some applications of the results of x�� Theorem ���
implies that for any sequence of spaces Zn� n 	 �� �� � � �� contained in L��J�� J 	

����� ����� that satisfy ����� we have the estimate ������ for f � W s��d������L��J���
The condition ����� is satis�ed by all the standard spaces of approximation such
as algebraic polynomials and spline functions �discussed in more detail later in this
section�� We wish to single out� for further elaboration� one particular example which
appears frequently in wavelet theory� as well as computer aided design�

Let � be a univariate function with compact support on R� Let � be the smallest
integer such that � or one of its shifts ��x � k�� k � Z� is supported on 
�� ��� If
necessary� we can rede�ne � to be one of its integer shifts and thereby require that
� is supported on 
�� ��� We denote by S �	 S��� the shift�invariant space which is

��



the L��R��closure of �nite linear combinations of the shifts ��� � j�� j � Z� of �� By
dilation� we obtain the univariate spaces

Sk �	 fS��k�� � S � Sg� k � Z�
The approximation properties of the family of spaces Sk is well understood� In


BDR�� there is a complete characterization �in terms of the Fourier transform of ��
of when the spaces Sk provide the Jackson estimates

dist�g�Sk�L��R� � C��kskgkW s�L��R��� �����

For an integer s� we say that � satis�es the Strang�Fix conditions of order s if

����� �	 �� and Dj ����k	� 	 �� k � Z� k �	 �� j 	 �� �� � � � � s� �� �����

If � satis�es ����� and � is piecewise continuous and of bounded variation then Sk

provides the approximation estimate ����� �see e�g� 
DL� Chapter �����
We denote by Sk�J�� k � �� the restrictions of the spaces Sk to the interval

J �	 
����� ����� The functions ���kt � j�� j 	 �� � � � �k��� � � � � �k�� � �� span
Sk�J�� Each function g in W s�L��J�� can be extended to R with

kgkW s�L��R�� � ckgkW s�L��J���

It follows therefore that the spaces Sk�J� provide the approximation property �����
and hence Theorem ��� applies with n 	 �k� The functions R appearing in Theo�
rem ��� are of the form

R�x� 	
�k��X

j�������k��

X
����k

c�j� �����kx � � � j��

There is another representation of the functions in Sk�J� related to sigmoidal
functions� Let

��t� �	
�X
j��

��t� j�� �����

Then the functions ���kt� j�� j 	 ��� �� �k��� � � � � �k�� � �� also span Sk�J�� The
function � is � for t su�ciently large negative and � for t su�ciently large positive�
However� it is not necessarily monotone �without additional assumptions on ���

Corollary ��� Let � satisfy the Strang�Fix conditions ����� of order s� Then for
each function f � W s��d������L��Bd

������ there is a function

R�x� 	
�k����X

j�������k��

X
����k

c�j� �����kx � � � j�

such that

kf �RkL��Bd
���

� � c ���s��d������kkfkW s��d������L��Bd
���

��� k 	 �� �� � � � �

with c independent of f and k�

��



For certain choices of � above� we obtain that � of ����� is a sigmoidal function
in the terminology of neural networks� We recall that a sigmoidal function is a
nonnegative� monotone� univariate function which has limits 	 � as t� �� and 	 �
as t � �� To obtain examples of such sigmoidal functions� we can take � to be a
B�spline� Let � �	 N��s� where for each j � Z and s 	 �� �� � � �� Nj�s �	 s��Mj�s is the
B�spline of order s �see 
DL� Chapter ��� with breakpoints j

�n
� � � � � j�s

�n
� The function

�s�t� �	
�X

j��s��

Nj�s�t�� t � R

of ����� is a sigmoidal function� and� in the case s 	 �� it is the unit impulse function
�
�����

� The functions �s�t � j
�n

�� j 	 �n� � � � � n � s � �� form a basis for Sn�s the

space of all splines of degree s� � de�ned on J with breakpoints belonging to the set
f�n��

�n � �n��
�n � � � � � n���n g� From Theorem ���� we obtain the following�

Corollary ��� For any f � W s��d������L��Bd
������ there are constants c�k� ��� � �

�n� k 	 �n� � � � � n � s� �� such that

R�x� 	
X
���n

n�s��X
k��n

c�k� ���s

�
x � � � k

�n

�
�����

satis�es
kf �RkL��Bd

���
� � cn�s��d�����kfkW s��d������L��Bd

���
��

with c independent of f and n�

The functions R in ����� correspond to the outputs of a feed�forward neural
network with O�nd��� nodes of computation� Thus� the corollary shows that such
neural networks have computational e�ciency comparable to standard methods of
approximation like splines and wavelets�

The special case s 	 � in Corollary ��� is also noteworthy� In this case the
function � is the unit�impulse function and the functions R are piecewise constant�
The order of approximation provided by Corollary ��� is somewhat surprising� One
might expect that such piecewise constants could only provide approximation order
� while the corollary gives approximation order �d � �����

�� Appendix

A�� Proof of 	���
� Since Pn is invariant under rotations� it is su�cient to prove
that hP �x��Un�x��i 	 � for each P � Pn�� or that

hxm�Un�x��i �	
Z
Bd
xmUn�x�� dx 	 � when jmj � n� ��

��



Write
Bx� �	 fx� 	 �x�� � � � � xd� � x�� � � � � � x�d � �� x��g�

We have

hxm�Un�x��i 	
Z
I
xm�
�

�Z
Bx�

xm�
� � � � xmd

d dx�
�
Un�x�� dx��

Because of the symmetry it is obvious that the inner integral above is equal to zero
if at least one of m�� � � � �md is odd� Consider the case when all m�� � � � �md are even�
We now change the rectangular coordinates in the inner integral to spherical and �nd

Z
Bx�

xm�
� � � � xmd

d dx� 	 c
Z ���x������

�
rm������md�d�� dr 	 c�� � x���

�
� �m������md�d����

where c depends on d�m�� � � � �md� Therefore

hxm� Cn�x��i 	 c
Z
I
xm�
� ��� x���

�
� �m������md�Un�x���� � x���

d��
� dx� 	 �

since the univariate polynomial Un is orthogonal to Pn���I� in L��I� w� �see ����� and
������� �

A�� Proof of 	����
� We �rst show that for each g � L��I� w�d������

R�g���x� �� t� 	 jBd��j���t�� d���
Z
I
g�cos 
 cos��u sin 
 sin�����u�� d��� du� ������

where t 	� cos 
� t � I� � � 
�� 	� is the angle between � and � �cos� 	 � ���� jBd��j is

the volume of the unit ball Bd�� in Rd��� jBd��j 	 ��d����

�d���
�d������ and R is the Radon

transform de�ned in ������� Indeed� it is easily seen that

R�g�� � x� �� t� 	 jBd��j
Z p

��t�

�p��t�
g�t cos� � v sin����� t� � v��

d��
� dv�

Substituting v 	 �� � t�����u in the above integral we get �������
Our second step is to prove that

R�Cd��
n �� � x� �� t� 	 jBd��j�

d�����d���n�

��n � d�
�� � t��

d��
� Cd��

n �t�Cd��
n �� � ��� ������

Indeed� the classical addition theorem for Legendre �Gegenbauer� polynomials can be
written as follows �see 
E�� p� �����

C�
n�cos 
 cos� � sin 
 sin� cos��

	
nX

m��

�m��� � �m� ���n �m��

���m��

��� � ��n�m��

� �sin 
�mC��m
n�m�cos 
��sin��mC��m

n�m �cos��C�����
m �cos��

��



and hence� for � 	 d��� and u �	 cos�� u � I� we have

Cd��
n �cos 
 cos� � u sin 
 sin��

	
nX

m��

�m�d � �m � ���n �m��

�d���m��

�d� ��n�m��

� �sin 
�mC
d���m
n�m �cos 
��sin��mC

d���m
n�m �cos��C�d�����

m �u��

We now insert this into ������ and use the fact that C�d�����
m �u�� m 	 �� �� � � �� are

orthogonal to the constants in L��I� w�d������ to obtain

R�Cd��
n �� � x� �� t�

	 jBd��j�� � t���d�����
�d� ��n�

�d� ��n��
Cd��
n �cos 
�Cd��

n �cos��
Z
I
��� u���d����� du�

This implies �������
We �nally use ������ to obtainZ

Bd
Cd��
n �� � x�Cd��

n �� � x� dx 	
Z
I
R�Cd��

n �� � x� �� t�Cd��
n �t� dt

	 jBd��j�
d�����d���n�

��n � d�
Cd��
n �� � ��

Z
I

Cd��

n �t����� � t���d����� dt

	 �n�dC
d��
n �� � ���

where

�n�d �	 jBd��j�
d�����d

��n�

��n � d�
hn�d���

Simple calculations show that this is ������� See 
RK�� �

A�� Proof of 	����
� The following relation between contiguous Gegenbauer poly�
nomials holds �see 
E�� p����� ������

�n � ��C���
n�� 	 ��� ��

h
C�
n�� � C�

n��
i
� � � ��

Also� C�
� �t� 	 � and C�

� �t� 	 ��t� These identities readily imply

C�
n 	

�n���X
j��

n � �j � �� �

� � �
C���
n��j� ������

Simple calculations show that ������ with � 	 d�� �d � �� is ������� �

A�� Proof of 	����
� Identity ������ follows from the fact that Un�� � x� �as a
function of �� is a spherical polynomial in Hn
Hn��
� � �
H� and �nUn�� ����Un���
is the reproducing kernel for this space �see �������� �

��
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